1. Show $\nabla_{h^{(K)}}L_y(\hat{y}) = \nabla_{\hat{y}}L_y(\hat{y})$

Since $h^{(K)}$ represents the output of the last layer K of the network, it is also the prediction (\hat{y}) of the model. Therefore, $h^{(K)} = \hat{y}$, meaning the gradient w.r.t. one equals the gradient w.r.t. to the other.

2. Show $\nabla_{a^{(K)}} L_y(\hat{y}) = g'(a^{(K)})^\top \odot \nabla_{\hat{y}} L_y(\hat{y})$

Since g is an element-wise function, using the chain rule results in the following elementwise product

$$
\nabla_{a^{(K)}} L_y(\hat{y}) = \nabla_{\hat{y}} L_y(\hat{y}) \odot \frac{dh^{(K)}}{da^{(K)}}
$$

where

$$
\nabla_{\hat{y}} L_y(\hat{y}), \frac{dh^{(K)}}{da^{(K)}} \in \mathbb{R}^{1 \times n}
$$

to keep consistent with our definition of gradient dimensions. We know that

$$
\frac{dh^{(K)}}{da^{(K)}} = g'(a^{(K)})
$$

but since $h^{(K)} \in \mathbb{R}^n$, the derivative $g'(a^{(K)})$ will yield the same dimensions. The elementwise multiplication can not occur unless the quantity is in $\mathbb{R}^{1 \times n}$. Therefore we transpose it, and due to the commutative property of element-wise multiplication, we can bring the transposed quantity out front to get

$$
\nabla_{a^{(K)}} L_y(\hat{y}) = g'(a^{(K)})^\top \odot \nabla_{\hat{y}} L_y(\hat{y})
$$

3. Show $\nabla_{W^{(K)}} L_y(\hat{y}) = h^{(K-1)}(\nabla_{a^{(K)}} L_y(\hat{y}))$

Again with the chain rule, we know

$$
\nabla_{W^{(K)}}L_y(\hat{y})=\nabla_{a^{(K)}}L_y(\hat{y})\frac{da^{(K)}}{dW^{(K)}}
$$

where

$$
a^{(K)} = W^{(K)} h^{(K-1)} + b^{(K)}
$$

so

$$
\frac{da^{(K)}}{dW^{(K)}} = \frac{d}{dW^{(K)}} \left[W^{(K)} h^{(K-1)} + b^{(K)} \right]
$$

The derivative of $a^{(K)}$ w.r.t. matrix $W^{(K)}$ is easier to compute using vectorization, where $vec: \mathbb{R}^{n \times m} \to \mathbb{R}^{nm}$. An example definition is shown below

$$
vec(ABC) = (C^{\top} \otimes A) vec(B)
$$

where ⊗ is the Kronecker product operator. In addition, the bias is dropped since its derivative w.r.t. $W^{(K)}$ is 0. So

$$
W^{(K)}h^{(K-1)} = ((h^{(K-1)})^{\top} \otimes I) \, vec(W^{(K)})
$$

$$
\frac{da^{(K)}}{dw^{(K)}} = (h^{(K-1)})^{\top} \otimes I
$$

Therefore, the vectorized gradient equals

$$
\nabla_{w^{(K)}}L_y(\hat{y})=\nabla_{a^{(K)}}L_y(\hat{y})\left((h^{(K-1)})^\top\otimes I\right)
$$

Transpose the result to make things easier down the line

$$
\nabla_{w^{(K)}} L_y(\hat{y})^{\top} = \left(h^{(K-1)} \otimes I \right) \nabla_{a^{(K)}} L_y(\hat{y})^{\top}
$$

To get back to our gradient from our vectorized gradient, we use inverse vectorization. Inverse vectorization is defined as $vec^{-1}: \mathbb{R}^{nm} \to \mathbb{R}^{n \times m}$, meaning

$$
\nabla_{W^{(K)}}L_y(\hat{y})=vec^{-1}\left(\nabla_{w^{(K)}}L_y(\hat{y})\right)
$$

so

$$
\nabla_{W^{(K)}}L_y(\hat{y})=vec^{-1}\left(\left(h^{(K-1)}\otimes I\right)\nabla_{a^{(K)}}L_y(\hat{y})^\top\right)^\top
$$

We know that $\nabla_{a^{(K)}} L_y(\hat{y}) \in \mathbb{R}^{1 \times n}$, so $vec(\nabla_{a^{(K)}} L_y(\hat{y})^\top) = \nabla_{a^{(K)}} L_y(\hat{y})^\top$. We can rewrite what we have above

$$
= vec^{-1} ((h^{(K-1)} \otimes I) vec (\nabla_{a(K)} L_y(\hat{y})^{\top}))
$$

$$
= vec^{-1} (vec (\nabla_{a(K)} L_y(\hat{y})^{\top} (h^{(K-1)})^{\top}))
$$

$$
= (\nabla_{a(K)} L_y(\hat{y})^{\top} (h^{(K-1)})^{\top})^{\top}
$$

So that

$$
\nabla_{W^{(K)}} L_y(\hat{y}) = h^{(K-1)} \nabla_{a^{(K)}} L_y(\hat{y})
$$

4. Show $\nabla_{h^{(K-1)}}L_y(\hat{y}) = (\nabla_{a^{(K)}}L_y(\hat{y}))W^{(K)}$

Similar to 3.,

$$
\nabla_{h^{(K-1)}}L_y(\hat{y}) = \nabla_{a^{(K)}}L_y(\hat{y})\frac{da^{(K)}}{dh^{(K-1)}}
$$

where

$$
a^{(K)} = W^{(K)} h^{(K-1)} + b^{(K)}\\
$$

so

$$
\frac{da^{(K)}}{dh^{(K-1)}} = \frac{d}{dh^{(K-1)}} \left[W^{(K)} h^{(K-1)} + b^{(K)} \right]
$$

The derivative of $a^{(K)}$ w.r.t. vector $h^{(K-1)}$ is simply the matrix $W^{(K)}$, meaning

$$
\frac{da^{(K)}}{dh^{(K-1)}} = W^{(K)}
$$

So that

$$
\nabla_{h^{(K-1)}}L_y(\hat{y})=\nabla_{a^{(K)}}L_y(\hat{y})W^{(K)}
$$