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1. Show ∇h(K)Ly(ŷ) = ∇ŷLy(ŷ)

Since h(K) represents the output of the last layer K of the network, it is also the prediction
(ŷ) of the model. Therefore, h(K) = ŷ, meaning the gradient w.r.t. one equals the gradient
w.r.t. to the other.

2. Show ∇a(K)Ly(ŷ) = g′(a(K))> �∇ŷLy(ŷ)

Since g is an element-wise function, using the chain rule results in the following element-
wise product

∇a(K)Ly(ŷ) = ∇ŷLy(ŷ)� dh(K)

da(K)

where

∇ŷLy(ŷ),
dh(K)

da(K)
∈ R1×n

to keep consistent with our definition of gradient dimensions. We know that

dh(K)

da(K)
= g′(a(K))

but since h(K) ∈ Rn, the derivative g′(a(K)) will yield the same dimensions. The element-
wise multiplication can not occur unless the quantity is in R1×n. Therefore we transpose
it, and due to the commutative property of element-wise multiplication, we can bring the
transposed quantity out front to get

∇a(K)Ly(ŷ) = g′(a(K))> �∇ŷLy(ŷ)

3. Show ∇W (K)Ly(ŷ) = h(K−1)(∇a(K)Ly(ŷ))

Again with the chain rule, we know

∇W (K)Ly(ŷ) = ∇a(K)Ly(ŷ)
da(K)

dW (K)

where
a(K) = W (K)h(K−1) + b(K)

so
da(K)

dW (K)
=

d

dW (K)

[
W (K)h(K−1) + b(K)

]
The derivative of a(K) w.r.t. matrix W (K) is easier to compute using vectorization, where
vec : Rn×m → Rnm. An example definition is shown below

vec(ABC) =
(
C> ⊗A

)
vec(B)

where ⊗ is the Kronecker product operator. In addition, the bias is dropped since its
derivative w.r.t. W (K) is 0. So

W (K)h(K−1) =
(

(h(K−1))> ⊗ I
)
vec(W (K))

da(K)

dw(K)
= (h(K−1))> ⊗ I
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Therefore, the vectorized gradient equals

∇w(K)Ly(ŷ) = ∇a(K)Ly(ŷ)
(

(h(K−1))> ⊗ I
)

Transpose the result to make things easier down the line

∇w(K)Ly(ŷ)> =
(
h(K−1) ⊗ I

)
∇a(K)Ly(ŷ)>

To get back to our gradient from our vectorized gradient, we use inverse vectorization.
Inverse vectorization is defined as vec−1 : Rnm → Rn×m, meaning

∇W (K)Ly(ŷ) = vec−1 (∇w(K)Ly(ŷ))

so

∇W (K)Ly(ŷ) = vec−1
((

h(K−1) ⊗ I
)
∇a(K)Ly(ŷ)>

)>
We know that∇a(K)Ly(ŷ) ∈ R1×n, so vec

(
∇a(K)Ly(ŷ)>

)
= ∇a(K)Ly(ŷ)>. We can rewrite

what we have above

= vec−1
((

h(K−1) ⊗ I
)
vec

(
∇a(K)Ly(ŷ)>

))>
= vec−1

(
vec

(
∇a(K)Ly(ŷ)>(h(K−1))>

))>
=
(
∇a(K)Ly(ŷ)>(h(K−1))>

)>
So that

∇W (K)Ly(ŷ) = h(K−1)∇a(K)Ly(ŷ)

4. Show ∇h(K−1)Ly(ŷ) = (∇a(K)Ly(ŷ))W (K)

Similar to 3.,

∇h(K−1)Ly(ŷ) = ∇a(K)Ly(ŷ)
da(K)

dh(K−1)

where
a(K) = W (K)h(K−1) + b(K)

so
da(K)

dh(K−1) =
d

dh(K−1)

[
W (K)h(K−1) + b(K)

]
The derivative of a(K) w.r.t. vector h(K−1) is simply the matrix W (K), meaning

da(K)

dh(K−1) = W (K)

So that
∇h(K−1)Ly(ŷ) = ∇a(K)Ly(ŷ)W (K)

2


